
NOTATION 

8,,8~, X, Y, Z, Fo, dimensionless variables: temperatures, coordinates, and time; a, b, 
sides of rectangle; =J, a2,%1,%2, thermal diffusivities and thermal conductivities of wall ma- 
terial and fluid; YI, Y2, dimensionless semiaxes of ellipse; ~, thickness of duct wall in Y 
direction; Pe, Bi, P~clet and Blot numbers; Wz(X, Y) dimensionless velocity profile of fluid 
flow in duct. 
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FUNDAMENTALASPECTS OF THE DEVELOPMENT OF ALGORITHMS FOR MATHEMATICAL 

MODELING OF THE THERMAL MODE OF THIN-WALLED STRUCTURES 

V. S. Khokhulin UDC 536.24.02 

Specialized algorithms are proposed for computation of the temperature fields in 
thin-walled structural elements. 

Among the universal methods of mathematical modeling of the thermal mode of a structure 
should be those based on solving systems of heat-conduction equations [I, 2]. Application 
of the method of "skeleton" structures [2] permits computing the temperature fields in struc- 
tures of practically any geometry, Its universality lies in the fact that the "skeleton" 
structure combines the thermal models of the individual elements into a single generalized 
mathematical model. Moreover, it can also be used to compute the temperature fields in ele- 
ments of complex geometry. For this, the element is partitioned into separate subdomains of 
canonical shape whose thermal state is described by the traditional heat-conduction equations. 
However, such a breaking down of the structural elements results in excessive awkwardness 
of the mathematical model and degrades its graphic appearance and convenience of application. 
Hence, the construction of typical methods and recipes for the solution of problems of analyz- 
ing temperature fields in groups of structural elements or individual elements of complex 
shape possessing definite characteristic criteria which would permit expansion of the domain 
of application of the method of "skeleton" structures is urgent. This paper is devoted to 
the development of algorithms to solve this problem. 

The paper [3], in which an algorithm is proposed for the computation of temperature 
fields in thin-walled structural elements having the longitudinal coordinate z common for all 
plates, might be an example of the development of specialized algorithms. 

Let us first examine the problem of computing the thermal state of the plates displayed 
in Fig. la. The temperature distribution in these plates is described by using the following 
system of heat-conduction equations 
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Fig. i. Diagram of the plate connections (a) 
and the corresponding coordinate system (b). 
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( i )  
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(4) 
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�9 I (6) 
i=t.5.6" OXj / xi~L,~rs~r a 

T(xl)[x~er~ = T(xj)l~isr f VXi, xj~ I'~ (] rj, i=;~], i, ] = 1, 7. (7) 

Each of Eqs. (i) can separately be solved numerically for known initial and boundary 
conditions by using summary approximation schemes. However, the presence of the component 

] L(xi, ~ 0~I in (i), which models the thermal influence of the i-th plate on 

the state of plates numbered j at the site of their connection, as well as conditions (4)- 
(7), require the development of a specialized algorithm. Let us note that in the problem 
formulation under consideration, the boundary conditions are written in the simplest form. 
The geometric parameters of the connected elements must be taken into account in specific 
c a s e s .  

Underlying the algorithm being developed are principles for constructing locally one- 
dimensional schemes, as well as methods of solving difference problems by graphs. Let us 
introduce the coordinate system (Fig. ib) for each plate in the system, and also the matched 
spatial network ~h in the domain D=UDi, f=l,7: 

i 

= ~x (~) ihF),  h~)^r(~) IF), -~T,  (Oh t ],~ ~ = �9 O =  ,q , , i  , 1, 2, i = 0 ,  j = I, 7}. (8 )  

The algorithm consists of the step-by-step solution of problem (i)-(7). The quantity 
of steps and their sequence are determined by the structural diagram. The temperature dis- 

(i) 
tribution in the plates is investigated in the direction x] , ]= I, 7 in the first step. As 
in the case of traditional locally one-dimensional schemes, the following system of inter- 

o(2) 
related heat-conduction equations given for each layer a.ia, i----0, N~ ~), ] .=  1.7, in the appropri- 
ate graphs (Fig. 2a) is considered: 
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Fig. 2. Graphs used to solve the initial problem in the 
step (a) in the direction x}D , and (b) in the d~recBion 

4 ~*, ] = 

p (x~', T) C. (x}", r ) ,  or = L.r  (x~ '~) + q. (x~', r), 
Ot (9) 

VxjEDi,  ] = 1, 7. 

T(x~")l~ = r (x!'~)l~_,, T(x~'Sl~=o = To (x~'5, ] = ~,----7, (10) 
(11) 

OT i = qrj, i # i ,  ~, ] = 1 ~ ,  - ~  (x} '~, T) 0x~,--- v 4 ' ~ s \ ~  

OT I . .  (1) aT ! (12) 
~, (x~ '~, T) 0x~-----y = ,~tx3 , T) , 

Ox"' x':'~r,~,o,\r,, = ~ ~ + 

+ q, (x~", 7')')6 (x~ ')) ] x~t)e~o ' \ r ' ) q r '  ' 

r(x~")l Aj,er, = T(x?~)!x?, o ,  VX; ~', x~"E r,  n ( o l \ r , ) ,  (13) 

= T(x)'))l ~,)er j, gx~, x., c r,  ,q r,, i = ] ,  i, l =  ~ ,  T (xll~) I x~ l)eri (14) 

LeE us n o t e  t h a t  t he  f a c t o r i z a t i o n  method can be used to  so lve  t h i s  problem in case  i t  
i s  g iven  by t h e  s i m p l e s t  graph ,  and by t h e  method of  s o l v i n g  d i f f e r e n c e  problems  by graphs  
[4] i f  i t  i s  g iven  by a complex graph  ( t h e  number of  edges  i s  >~2), 

F u r t h e r m o r e ,  the  t e m p e r a t u r e  d i s t r i b u t i g n  in the  d i r e c t i o n s  x~ 2), ] = 1 7 ,  i s  i n v e s t i -  

ga ted  in t he  second s t e p .  In t h i s  ca se  a sys tem of  i n t e r r e l a t e d  o n e - d i m e n s i o n a l  h e a t - c o n -  
d u c t i o n  e q u a t i o n s  d e t e r m i n e d  on one o f  t h e  g raphs  d i s p l a y e d  in Fig .  2b i s  so lved  f o r  e a c h  

ll) ~-~,(l ) 
l a y e r  x~ ,~ , /=0 ,~ i  , ] = 1 , 7  : 

p (x} ~', r) Cp (,,~- '~-', r)--~,~ = L,r (x~ ~') + qo (x}-Z r), 
(15) 

VX~ 2~ E Dj, i = 1, 7, 

T(x)2))]k = T(x~2))/A-1, T+-(-~)",̂ i /l~=o = To(x}~)), ] =  1-~, (16) 

~ [xi , T) ~ ) e r ~ \ o  = q r ~ , .  i-~.], i, ] = 1, 7, (17) 

x (xT', T) axiS--- w ~ I ~ v ~ , , \ v =  X (W', T) ~ ~I~,~,~,~\~,  

i ~ ] ~ k ,  i, i, k =  1, 2, 5, 6, (18) 
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Fig. 3. Orthogonal connection of the plates: a) connec- 

tion diagram; b) construction of the graph GIO, i= I, N; c) 

construction of the graphs G~~ O~i~, i= I~, ]----1,2, 3 �9 

0x~r2----'-T ~ f )e r ,no , \ r , - -  0xi2) tt' txl ' 0x~2)~ § q~ (x~2)))l x~'~176 

T(x~2))t x~.O)er, = T(x?~))/x~.O)eo, Vxr , r , n (D~xr , ) ,  (19) 

OT "l l 
, ~  ( - - L ( x }  2), T ) ~ ]  = 0 ,  (20) 

] = 1 , 5 , 6  ", - x}2)qr~lqr~flrt 

T(x~'~) I x ~-~ r = T (x}'~) I xc, ~ _ ,  Vx~, x~ ~ i'~ fl r~, i =/= ], i, ] = 1 ~ .  (21) 
i E i j C v j  

The temperature fields in the structure under consideration are determined after comple- 
tion of the second stage as a result of the numerical solution of problems (9)-(14) and (15)- 
(21) .  

This algorithm permits solution of the initial problem (i)-(7) considerably more simply 
than in the case of applying the "skeleton" structure method. This is because there are no 
iterations to determine the temperature fields in the "skeleton" structure which would be 
used to connect the temperature fields of the plates. 

Let us examine still another specific case of the orthogonal connection of plates which 
is widely used in different structures (Fig. 3a). The thermal state of these plates can be 
determined by using the method of elementary heat balances or the "skeleton" structure meth- 
od. From the viewpoint of universalization of the thermal computation, we consider the 
specialized algorithm that realizes the solution of the following boundary-value problem 

p(xj, T) C•(xj, T) OT O ( T) dT 
0--7- ="  oXj L(x~, Oxj ) q- q~(xj, T, t), (22) 

T(x])lt=0-= T0(xj), Vx~ED~, ] = 1, 2, 3, (23) 

T) or [ _=_ 
--X(x,, - ~ x j  irj qrj, VxjErj\D~, i=/=], i, 1=  1, 2, 3, (24) 

OT [ =L(xi, T) c)T l ),(x j, 
T )  xjercnr~ xierinr j ' (25) 

i=/=j, i, 1=  ], 2, 3, 

T(xj)lxjerj = T(xi)lxieri, Vxl, x~EI'i~F~, i#-],  i, ] =  1, 2, 3. (26) 

Let  us i n t r o d u c e  a matched space-- t ime ne twork  mht ana logous  to  (8) :  

r = {X},Pl = ih}'); h}')N = l} v), p = 1, 2, i=  O, N', (27) 

] = 1, 2, 3, t = kh~, htNt = tfiri }. 

Using the  i d e a  of  s p l i t t i n g  the  t w o - d i m e n s i o n a l  d i f f e r e n t i a l  o p e r a t o r s  in  (22) ,  we 
so lve  problem (22 ) - (26 )  in  two s t e p s .  In  c o n t r a s t  to  the  a l g o r i t h m s  examined e a r l i e r ,  d i -  
r e c t  a p p l i c a t i o n  o f  t h e  method of  l o c a l l y  o n e - d i m e n s i o n a l  d i r e c t i o n s  (or  t h e  method of  v a r $ -  
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able directions in a particular case) is difficult because the sequential examination of 
temperature fields in plates in appropriate directions results in the total impossibility 
of matching the time intervals of the solutions of all problems with the time intervals of 
the temperature field computation in each of the plates. 

In the traditional method of locally one-dimensional directions the operator L2T in 
(22) is represented in the form of the sum of two operators L=T =L!,~)T-?2 Li~=)T that charac- 
terize the heat distribution over the corresponding directions of the plates under consider- 
ation. In this case the temperature fields are computed by successive solution of the cor- 

responding one-dimensional equations in the directions x} I) and x~ 2). 

This sequence is modified somewhat in the method proposed. In the first step the pro- 
cess of heat propagation is considered in the neighborhood of the vertex of the connection 
as is shown in Fig. 3b. Here the following system of equations is solved, which is given 

in each graph G~ b, i= Ii N, encircling the vertex: 

p(x~p), , r ~  :..O,) 7')OT 0 Ox}P), ~ qv v i , T, l), (28) " ' " ' " "  ' Ot =o.;,.F ~ 
: .(v)~ -p (p) T vD 1,,,=: " (xi )1,..,, T (.r}P))lt= o T,," era, 

VxSP) CD~, p .... 1, 2, j = 1, 2, 3, (29) 

07" , r 07' 

"7" (I~, == T,,.,,:~h, Vrbp) , ( x i ' )  ~.~i ~ . CD:~qGJ '), p = l , 9 ,  g=1"~79, j = I ,  9 ,3 ,  (30)  

'~  ,,., 0T I ~(xj, T) ot  ! :=Z(xi ,  . j ~ !  , 
O ' ~ J  ]xi-cr j xi,~r i 

7"(x.0l,v~er , = T(x,)[xter: VXi, x j{  F i (] l'i, i,-~ = j ,  i, j = 1, 2, 3. (31) 

h particular case of the graph O~ i~ is the degenerate graph G~ ~ that consists of one 
vertex, the vertex of the plate connections. The following heat-balance equation is given 
for this graph 

C~,~ ) dT . =  q~O), (32)  
di 

where C,(, ~ is the mass specific heat of the vertex, and q(O) is the sum of the heat sources, 
both the external and the internal acting at the vertex. 

For i = 1 the system of partial differential equations (28)-(31) degenerates into a sys- 
tem of ordinary differential equations describing the temperature change at the vertices of 

the graph GI b. 

After having solved the problem (28)-(31), (32), the following system of equations, 

defined on each graph (7 (~ G~(i3, i= 1,-7-~, j= 1, 2, 3 (Fig. 3c) is examined in the second stage: 

T'J--0IOT ~ O  .(~" T" OF \ p (x}#), r ) c p  (x~ n, , . . . . .  (x} p, , } ~ ) q -  (33) 
I 

--kq.(x} ~ T, t), Vx}#)6D/~'G(~ =,l VG~~ 

T(xbP))I ,=~ = ro(x~P)), T(x}~  = T (x}m)[,,_l, (34) 

--'~.(x~ m, T) aT t = *'}"~rs %/ (35) 

)~ (x}'), T) aT (2) aT 
Ox~ ~--'-~ = ~ (x /  , T )  ---Ox[~ ) , 

T" (I)" (2) tx i )---T(x 2 ), Vx~ -p) 6DJ~D~J, i=l, N, p= l, 2, (36) 

GLo) dT . . . . . . .  ~.(x} "), T) OT dt .= ~ -}- q~O), (37)  

629 



i = I ,  N, p = l ,  2, ] = I ,  2, 3. (38) 

Let us no te  t ha t  the  system of equa t i ons  (33) fo r  the graph G~2~, one of  whose v e r t i c e s  
coincides with the vertex of the plate connections, is compiled exactly the same as in the 
method of "skeleton" structures, directly for the plate connection. 

To complete the description of the heat propagation in the second stage, the following 
heat-balance equation, analogous to (32), must be given at the tip points of the plate in 

the second stage, namely, on the degenerate graphs o(2N], ]=|, 2, 3 : 

c(N) dT (N) (39) 
mj dt =qvJ , ] =  I, 2, 3. 

Temperature fields in orthogonally connected plates are determined as a result of suc- 
cessive solution of systems (28)-(31), (32)and (33)-(38), (39). 

In conclusion, we note that the algorithms examined in this paper as well as in [3] per- 
mit substantial simplification of application of the method of "skeleton" structures for 
the investigation of the thermal regime of a number of structures because of enlargement of 
the individual modules of the mathematical thermal model, and therefore, enlargement of the 
model as a whole. 

NOTATION 

T, temperature; t, time; x, z, spatial coordinates; LT, a differential operator of 
parabolic type; qv, a source function; D, domain in which the solution is sought for the ap- 
propriate heat-conduction equation; F, boundary of the domain D, the subscript of the bound- 
ary of the appropriate domain; ~, heat-conduction coefficient; 0, density; C D, specific 
heat; Cm, mass specific heat; Z, plate linear dimension; 6, plate thickness; ~h' spatial network- 
mht, space-time network, h, network spacing; G, a graph; N, number of mesh nodes. Subscripts: 
i, j, k, coordinates of points or domains; p, direction; k, time; fin, finite time. 
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